1.3 Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Determine the magnitude of the force P for which the tensile stress in rod AB has the same magnitude as the compressive stress in rod BC.
1.14 A couple M of magnitude 1500 N ? m is applied to the crank of an engine. For the position shown, determine (a) the force P required to hold the engine system in equilibrium, (b) the average normal stress in the connecting rod BC, which has a 450-mm2 uniform cross section.
1.41 Link AB is to be made of a steel for which the ultimate normal stress is 450 MPa. Determine the cross-sectional area of AB for which the factor of safety will be 3.50. Assume that the link will be adequately reinforced around the pins at A and B.
1.66 The 2000-lb load may be moved along the beam BD to any position between stops at E and F. Knowing that sall 5 6 ksi for the steel used in rods AB and CD, determine where the stops should be placed if the permitted motion of the load is to be as large as possible.
1.69 The two portions of member AB are glued together along a plane forming an angle u with the horizontal. Knowing that the ultimate stress for the glued joint is 2.5 ksi in tension and 1.3 ksi in shear, determine the range of values of u for which the factor of safety of the members is at least 3.0.
Comments
Post a Comment